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Dynamics of periodically forced semiconductor laser with optical feedback
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Recently it was proposed that semiconductor lasers with optical feedback present a regime where they
behave as noise driven excitable units. In this work we report on an experimental study in which we periodi-
cally force one of these lasers and we compare the results with the solutions of a simple model. The compari-
son is based on a topological analysis of experimental and theoretical solutions.
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I. INTRODUCTION

The dynamics of semiconductor lasers with optical fe
back has been studied in depth since 1989@1#, although sys-
tematic studies go back as far as 1977@2#. This system pre-
sents a very rich dynamics@1,3–6#; in particular, for
moderate to strong feedback levels three qualitatively dif
ent regimes have been observed@7,8#. For pumping current
values close to the solitary laser threshold, the system
stable. As the injection current is increased, the laser bec
unstable and displays sudden power drops followed b
slower recovery stage. The characteristic rate of such fl
tuations is much smaller compared with the typical semic
ductor laser rates~carrier and photon lifetime, relaxation os
cillations!, hence the name low frequency fluctuatio
~LFF’s!. At higher injection currents, the laser optical lin
width broadens up to several hundreds of GHz and the
called coherence collapse~CC! regime settles down.

The theoretical model usually used to describe the dyn
ics of semiconductor lasers with optical feedback is the
by Lang and Kobayashi@9#. It is obtained considering a lase
operating in a single longitudinal mode and weak feedb
level. According to this model, an high-dimensional chao
attractor is at the origin of the drops@10# and therefore the
nature of LFF’s would be purely deterministic. On the oth
hand, Vaschenko and collaborators@11# have shown that
LFF’s are a consequence of the interplay between the t
delay and the multimode operation of the laser. These
perimental results could not be explained in the frame o
single mode interpretation.

Another approach to the interpretation of the LFF’s
based on the recognition of the most important dynam
ingredients at the origin of the instability, i.e., to identify th
role of noise and/or the bifurcation type. Following this pa
it was recently proposed that semiconductor lasers with
tical feedback in the LFF’s regime, behave as a noise-dri
excitable medium@8#. In this new dynamical scenario, th
role of noise is to induce a large deterministic excursion
the phase space.

In Ref. @8# excitability is meant as the possibility of con
forming pulses for perturbations above a given thresho
The distributions of the time intervals between drops a
their dependency with the experimental parameters~like the
feedback and the injection current of the laser! could be ex-
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plained in terms of a simple model~two-dimensions and
two-codimension! displaying pulse conformation for pertur
bations beyond a threshold@12,13#. Furthermore, recently
Giacomelli and collaborators@14# have reported experimen
tal evidence of coherence resonance in this system, enfor
the confidence on this scenario.

The first attempt to demonstrate the excitability behav
has been done periodically forcing the system with pulse
small amplitude@8# . The purpose of this procedure was
show the existence of a threshold. Forcing a system whic
able to conform pulses for perturbations beyond a thresh
with a periodic signal, results in a~at least! three dimensional
one. The global bifurcation structure of this system prese
periodic solutions, quasiperiodicity, period doubling, a
chaos@15,16#. A complete demonstration of the excitabilit
behavior of the system under study has to consider all
complexity. On the other hand, the semiconductor las
with external optical feedback display a multimode behav
in the LFF’s @11#. This multimode behavior is not bein
considered in the simplest excitable models, which are c
ceived to explain only the LFF’s. In principle these mod
could play an important role in the system under forcing.

In order to explore the range of validity of the simp
pulse-conforming scenario, we have analyzed the dynam
of a periodically forced semiconductor laser with optic
feedback, prepared in the noise-driven excitability region
its parameter space. The forcing applied was sinusoi
Stable patterns in the time series have been obtained u
this kind of forcing. We have separated periodic orbits fro
the experimental time series and calculated their topolog
numbers, like the self-linking number and the self-relati
rotation rates@17–19#. Finally, we have compared the ex
perimental results with the model. The purpose of this wo
is to build confidence or refuse the new scenario, at leas
the accessible range of parameters. This paper is organ
as follows. Section II describes the experimental setup
the measurements. Section III gives an interpretation of
results. Section IV contains the comparison between the
perimental results and the model. And finally, in Sec.
conclusions of the work are given.

II. EXPERIMENT

The experimental setup is shown in Fig. 1. It is very sim
lar to the one used by Yacomottiet al. @13#. The semicon-
©2001 The American Physical Society18-1
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FIG. 1. Experimental setup: LD: laser diode
PD: photodiode; OSC: oscilloscope; C: collima
tor; L: lens; M: mirror; TEC: thermoelectric
cooler; PS: power source; S: wave form gene
tor.
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ion
ductor laser used is a single transverse mode Sh
LTO30MD/MF emitting at a nominal wavelength of 750 nm
its current threshold has been measured to be at 36.66 m
our experiment the laser has been thermally stabilized u
0.01 °C. An high reflectivity mirror (.90%) is placed in
front of the laser edge, at a distance of 130 cm, in orde
return into the laser cavity part of the light emitted. A col
mator and an antireflection-coated lens are placed into
cavity in order to reduce the beam divergence and to m
match the returned beam with the emitted beam. The in
sity output is detected by a 1-GHz bandwidth photodiode
the signal is analyzed with a HP54616B 500-MHz oscil
scope. The system has been prepared in the region of pa
eters where it behaves as an excitable system; the pum
current has been set close the solitary laser threshold v
and the feedback level was moderately strong, gauged
threshold reduction of 5–10 %. In this condition the las
output displays noise-induced LFF’s characterized by a
covery stage of approximately 250 ns. From the work
Yacomotti et al. @13#, the probability distributions of time
intervals between drops can be used to specify accurately
point of the parameter space at which we have been op
ing. We have prepared the system in such a way to obta
monomodal distribution of times between dropouts eve
The distribution has a most probable time of 0.85ms and an
average value of 0.9ms. According to the model presente
in Ref. @13#, this situation corresponds to have prepared
system in a state far from the saddle-loop global bifurcati
This prevents the inevitable noise present in the system
anticipate this bifurcation and therefore to affect noticea
the dynamics of the system.

We have applied an electrical sinusoidal signal into
semiconductor laser via the pumping current. The forc
has been generated by a HP 33021A wave form gener
and overlapped to the dc biasing current of the laser thro
a biasT. We have analyzed the response of the laser as
amplitude and frequency of the forcing current is change

We have obtained an interesting behavior of the semic
ductor laser for periods ranging from 140 ns to 1ms and for
amplitudes from 200 to 500 mVpp. It appears that the
namics of the system is more affected by changes in
period of the modulation than by variations of the amplitud
In Fig. 2 we report the behavior of the system when
modulation amplitude is fixed at 210 mVpp and the period
changed. For forcing period between 1ms and 710 ns, the
response of the system seems to be phase-locked with
tion number 1:1. In other words, the time series is perio
with the period of the forcing and presents one dropout
every period of the forcing time. We define a generic beh
06621
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ior q:p as the periodical pattern in which the time-seri
have q dropouts everyp periods of the forcing time. For
periods between 670 and 410 ns the time series pres
coexistence of two different behaviors. In some time w
dows the behavior is 1:1 but, in other windows, it changes
another periodic pattern, represented by one dropout for
ery two periods of the forcing~1:2!. When the period is
between 400 and 330 ns the system seems to be perf
locked, with rotation number of 1:2. The time series ha
periodic pattern with one drop event every two periods of
forcing. At lower forcing periods, the system jumps main
between three different periodicities: 1:2, 1:3, and 1:4. F
thermore, we have identified a 2:3 periodic pattern at forc
periods between 590 and 530 ns. The main effect of incre
ing the forcing amplitude is to decrease the value of
forcing period at which the behavior with lowq dominates.
For example, when the system is forced with amplitude
400 mVpp, the 1:1 regime appears already at a forcing
riod of 600 ns. In Fig. 3, we show a map of the dynamic
behaviors experimentally observed in the system for diff
ent forcing amplitudeA and forcing periodsT.

III. INTERPRETATION

It is a typical strategy in nonlinear dynamics to find th
simplest equations compatible with the dynamical scena
we want to describe. A simple model able to describe pu
conformation for perturbations beyond a threshold has b
proposed by Eguiaet al. @12#. Also, they have demonstrate
that it gives a good statistical description of the times b
tween dropouts events.

In order to compare the model with the experimental
sults, the periodically forcing is added as shown:

x85y, ~3.1!

y85x2y2x31xy1e11e2x21A cos~vt !, ~3.2!

with (x,y)PR2 ande1 ,e2PR1, A is the forcing amplitude,
and v the forcing frequency. The comparison between
parameters dependence of the real system with the de
dence one1 and e2 of the model allows for identifyinge1
with the laser pumping current ande2 with the feedback
level @13#. Accordingly, the forcing term has been written
the model as a term added toe1. Without the forcing, the
proposed system presents four qualitatively different beh
iors. In Fig. 4, we display the mapping of the different b
haviors in the parameter space (e2 ,e1). The organizations of
the invariant manifolds are also given: we note that, in reg
8-2
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FIG. 2. Time series corresponding to every one of the experimentally observed behaviors.~a! 1:1 pattern.~b! Intermittencies between the
1:1 and the 1:2 patterns.~c! 2:3 pattern.~d! 1:2 pattern.~e! 1:3 pattern.~f! Intermittencies between the 1:3 and the 1:4 pattern.
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FIG. 3. The experimental map of the regions in which the d
ferent periodical patterns have been observed. The amplitude
unit of millivolts peak to peak~mVpp!.
06621
II, the system exhibits the dynamics we have observed
perimentally without applying the forcing.

As already pointed out by Feingoldet al. @15#, when an
excitable system is periodically forced, the solutions are v
similar to the ones of a periodically forced oscillator. Th
bifurcation diagram can be represented by mapping the

-
in FIG. 4. Bifurcation diagram and phase portrait for Eqs.~3.1! and
~3.2! ~without the periodical forcing!. Figure from Ref.@13#.
8-3
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FIG. 5. Regions of the (A,T)
plane where the periodic orbit
with rotation number q/p are
stable.~a! e150.25 ande250.50,
~b! e150.21 and e250.70. Tn

510.0 in arbitrary units.
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gions in the parameter space (A,T) where the orbits with
rotation numberq/p are stable~Arnold tongues!. A periodic
orbit of rotation numberq/p is meant to be a periodic orb
with q spikes everyp multiples of the forcing period. Chang
ing the parameterse1 ande2 within region II, the bifurcation
diagram presents, essentially, the same regions. In Fig. 5
show the bifurcation diagram for two different points in th
parameter space (e1 ,e2), but always located in the region I
of Fig. 4. As has already been said,e2 could be related with
the feedback level. For parameter values within region II,
not close to the homoclinic bifurcation, the system display
dynamics similar to the one observed experimentally.
have extracted for every one of the important phase-lock
regions, a deterministic attracting periodic orbit, to be co
pared with the experiment. How could deterministic info
mation be extracted from the noisy experimental time ser
We conjecture that the dominant segments of high rec
rence in the noisy time series are the fingerprints of de
ministic periodic orbits of the forced system. For example
06621
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Figs. 2~a! and~c!, the 1:1 and the 1:2 orbits could be reco
nized. Every one of the identified periodic orbits correspon
to different resonances of the forced deterministic syste
Considering this hypothesis, the q:p periodic patterns exp
mentally observed could be identified with the resonan
with rotation numberq/p. Consequently, we have chosen t
rotation number of the dominant segments of the time se
to characterize the behavior of the system. So, the determ

TABLE I. Topological invariant numbers for the experiment
periodic orbits.

Orbits Period SRRR SLN

1:1 1 0 0
2:3 3 (22/3)2,0 24
1:2 2 (21/2),0 21
1:3 3 (21/3)2,0 22
1:4 4 (21/4)3,0 23
8-4
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DYNAMICS OF PERIODICALLY FORCED . . . PHYSICAL REVIEW E63 066218
istic skeleton may be constructed with the q:p periodic p
terns experimentally found. There are points in the exp
mental phase portrait where the system is not exactly in o
one resonance behavior. Looking at the time series co
sponding to these points, the system seems to be jum
between different resonances. For example in Fig. 2~c! the
periodic orbit 2:3 can be clearly recognized, but also
system jumping between the 1:2 and the 2:3 resonances
be seen. We claim that noise is responsible for these kin
intermittencies. In general, for parameters values such

TABLE II. Topological invariant numbers for the periodic o
bits from the model.

Orbits Period SRRR SLN

1/1 1 0 0
2/3 3 (22/3)2,0 24
1/2 2 (21/2),0 21
1/3 3 (21/3)2,0 22
1/4 4 (21/4)3,0 23

FIG. 6. ~a! Experimental time series with the 2:3 pattern.~b!
Embedding of the corresponding time series. The mathema
symbols display the orientation of the crossing. The topolog
numbers were computed in the (x,t) projection.
06621
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the system is at the edge of an Arnold tongue, a sm
amount of noise may unlock the system. By consequen
the time series presents only segments of phase-locked
havior. Within a tongue the system might also unlock,
though less frequently. These intuitive arguments are c
firmed by the numerical simulations: we have observed t
the jumping among different phase-locking behaviors occ
more frequently for parameter values located close to
edge of an Arnold tongue. In conclusion, taking into acco
the effect of noise, the bifurcation structure of the experim
is consistent with the theoretical predictions of the mode

IV. COMPARISON BETWEEN THE EXPERIMENTAL
DATA AND THE SOLUTIONS OF THE MODEL

Experimental periodic orbits have been extracted from
time series by the method of close returns@18,19#. We have
looked for periodic orbits at multiples of the forcing perio
The practical way to find close return segments is to co
code the distancesdi ,p between the points of the time serie
xi andxp . If the distance is smaller than a givene, a black
point is plotted at (i ,p). In such a plot, a periodic recurrenc

al
l

FIG. 7. ~a! Time series displaying the orbit with rotation numb
equal to 2/3.~b! Embedding of the corresponding orbit.~c! Enlarge-
ment of the bad resolve zone of~b!. The mathematical symbols
display the orientation of the crossing. Also in the theoretical ca
the actual computation of topological numbers was performed
(x,t) space.
8-5
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originates horizontal lines. In this way the segments h
been identified. Using this method, we have separated
following periodic orbits: 1:1, 1:2, 1:3, 2:3, and 1:4. In ord
to use a topological description of the periodic orbits, a th
dimensional embedding is needed. We have used the co
nient embedding (x,x8,t). The time series was filtered usin
an adjacent averaging. In spite of the noise present, two
pological invariant numbers have successfully been ca
lated. We have calculated the self-relative rotation ra
~SRRR! and the self-linking number~SLN! for every one of
the orbits. In Table I the results are shown. We have c
trolled the stability of the result, calculating the topologic
numbers for five embedded orbits extracted from differ
segments. In Table II the results of SRRR and SLN for
most relevant periodic orbits of the model are shown. In F
6, we display the 2:3 pattern and the corresponding emb
ding for the experimental measurements whereas in Fi
the results for the simulation are shown. The topological
ganization of the periodic orbits extracted from the expe
ment and from the model is equivalent.
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V. CONCLUSIONS

In this work, we have studied the dynamics of the pe
odically forced semiconductor laser with optical feedba
We conjectured the system as a noise driven one abl
conform pulses for perturbations beyond a threshold@12,13#,
and we compared topologically the observed solutions.
perimentally, we have analyzed the semiconductor laser w
optical feedback forced by a sinusoidal signal. Consider
the periodic patterns given by the system under the forc
as the fingerprints of periodic orbits of the forced determ
istic system, we have compared the experimental results
the solutions of the simple model proposed by Eguiaet al.
@12#. We have shown that the topological organization of t
periodic orbits experimentally identified is equivalent, with
the parameter region explored, to the one of the propo
scenario.
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